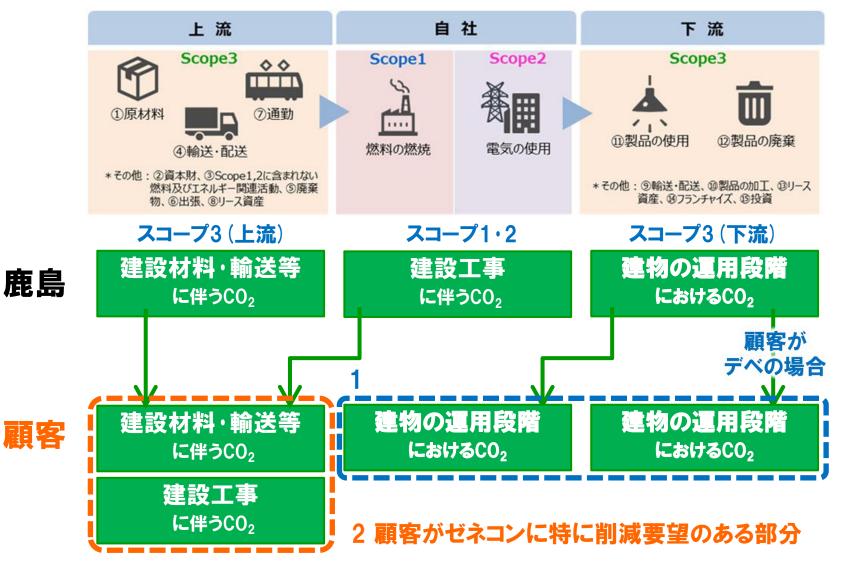

GBJシンポジウム2023

鹿島建設 建設業の脱炭素

KAJIMA DESIGN

鹿島建設建築設計本部 田名網 雅人

2019年 日本のCO₂総排出量 約11億800万t(全世界の3.3%)



添崎ら:「産業連関表を利用した建設業の環境負荷推定」 日本建築学会計画系論文集第549号, pp.75-82, 2001/11に基づき作成

削減対象	2030年	2050年	
自社排出分 (スコープ1+2)	2013年度比 ▲50% カーボンニュートラル ▲100%		2023年度
サプライチェーン排出分(スコープ3)	2022年度に目標設定		SBT※ 取得

※SBT: Science Based Targets サプライチェーンCO2排出削減目標の国際認証 ゼネコンでは大成、清水、戸田等が取得済 大林は取得準備中 三井不動産は、2023年度のゼネコンのSBT取得義務化を公表 他社においても発注の条件となる可能性あり

顧客のサプライチェーンとしての鹿島のCO2削減技術

- 1 建物運用段階のCO2削減 (顧客のスコープ1・2・3)
 - ① 省エネビル、省エネ工場
 - ② 省エネ管理の支援
 - ③ グリーンエネルギーの調達
- 2 建設投資に係るCO₂削減 (顧客のスコープ3)
 - ① 建設材料·輸送等
 - 2 建設工事

製造段階

(上流段階 スコープ3)

鉄鋼業界の取組み

現状

- ・2019年 約1億5400万t のCO₂を排出 (国内製造業の約40%)
- ・高炉ではコークスを使い、鉄鉱石を還元 して鉄を製造する過程でCO2が発生

対応策

水素還元製鉄等

セメント業界の取組み

現状

- ・2018年 約4300万t のCO₂を排出 (国内製造業の約10%)
- ・石灰石を加熱分解し、酸化カルシウムを 生成する過程でCO₂が発生

対応策

低炭素型新材料の開発等

2050年 カーボンニュートラルを目指す 難易度の高い革新的な技術開発が前提

構造躯体のCO2排出量 ⇒ 建築工事の約70%を占め、全体排出量への影響が大きい

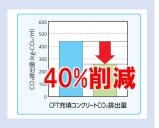
主要材料のCO2排出量(原材料のみ) 建築物のLCAツール:日本建築学会 2013年

材料(仕様)	CO ₂ 排出量
コンクリート(ポルトランド)	300~450 kg/m ³
型枠	10 kg/m ²
鉄骨	1500 kg/t
鉄筋	700 kg/t
耐火被覆(梁湿式)	3 kg/m ²
デッキプレート	25 kg/m ²

高炉鋼 2000kg/t 電炉鋼 500kg/t

木材の炭素貯蔵量 建築物に利用した木材に係る炭素貯蔵量に関するガイドライン:林野庁2021年

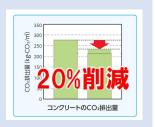
材料	炭素貯蔵量(CO ₂ 換算)		
スギ(製材、集成材、CLT)	605 kg/m ³		
カラマツ(製材、集成材、CLT)	806 kg/m ³		


エコクリートBLS

- ・収縮ひび割れ抵抗性に優れる(地上)
- •CO₂排出量 ▲65kg/m³

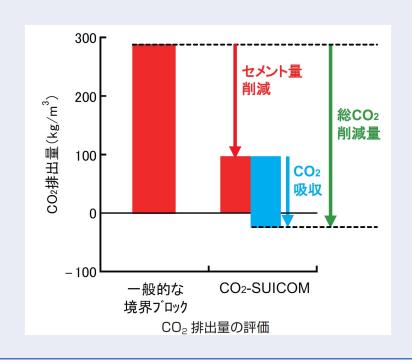
エコクリートKKC

- ・粘性低減・強度確保を実現(CFTコン)
- •CO₂排出量 ▲180kg/m³


エコクリートECM

- ・発熱が少ない(地下・基礎マスコン)
- •CO₂排出量 ▲180kg/m³

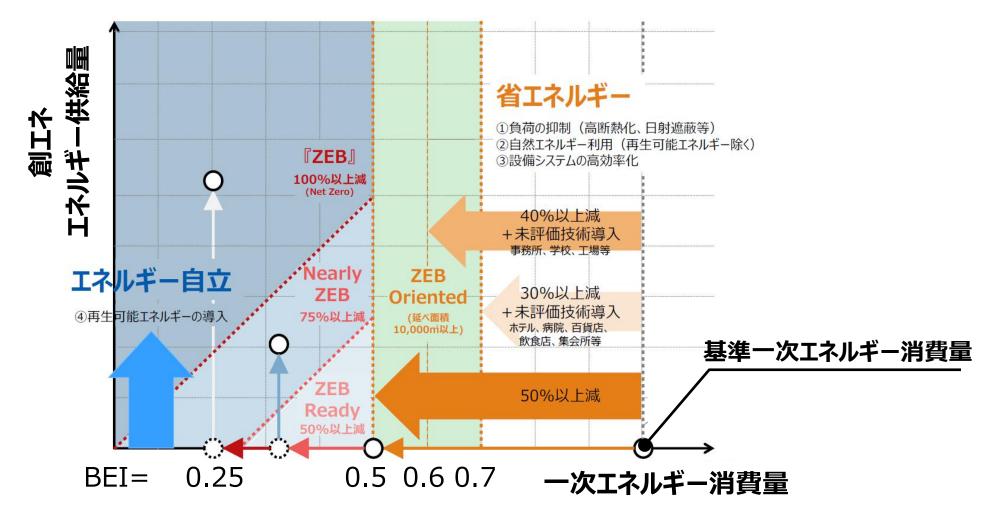
エコクリートR3(低含有型)


- ・戻りコンから製造した混和材CemR3を使用
- ·CO₂排出量 ▲50kg/m³

SUICOM

- ・産業副産物・特殊混和材をセメント代替材料として利用 セメント使用量を大幅に低減
- $\cdot CO_2$ を用いて炭酸化養生を行うことで、コンクリートに 大量の CO_2 固定が可能

CO₂排出量 ▲300kg/m³ (ゼロ以下)



運用段階

(下流段階 スコープ3)

・ZEBマークに関する表示…より省エネ性能高い

BEI= 0.25 0.6 or 0.7 …事務所想定創エネなし

- ・基準建物に対するエネルギーの削減割合によって建物の省エネ性能を評価
- ・省工ネ性能は『ZEB』> Nearly ZEB > ZEB Ready > ZEB Oriented

	建物全体		建物の一部		
分類			対象用途		建物全体
	創エネ設備を除いた エネルギー削減率	創エネ設備を含めた エネルギー削減率	創エネ設備を除いた エネルギー削減率	創エネ設備を含めた エネルギー削減率	創エネ設備を除いた エネルギー削減率
[ZEB]	50%以上 (BEI=0.5以下)	100%以上 (BEI=0以下)	50%以上 (BEI=0.5以下)	100%以上 (BEI=0以下)	
Nearly ZEB	50%以上 (BEI=0.5以下)	75%以上 (BEI=0.25以下)	50%以上 (BEI=0.5以下)	75%以上 (BEI=0.25以下)	
ZEB Ready	50%以上 (BEI=0.5以下)	-	50%以上 (BEI=0.5以下)	-	
ZEB Oriented (事務所,学校,工場等) 床面積10,000㎡以上	40%以上 (BEI=0.6以下)	-	40%以上 (BEI=0.6以下) + 未評価技術導入*	-	20%以上 (BEI=0.8以下)
ZEB Oriented (ホテル,病院,店舗,集会所等) 床面積10,000㎡以上	30%以上 (BEI=0.7以下)	-	30%以上 (BEI=0.7以下) + 未評価技術導入※	-	しばー効果の高い技術

KTビル

ZEB Ready

BEI=0.46 2016.09.30 認証取得

事務所 11,867㎡ 2016.08竣工

Hareza Tower

事務所部分 ZEB Ready

BEI=0.50 2019.07.19 認証取得

> 事務所部分 57,629㎡ 2020.05竣工

オムロン野洲1号館(関西支店)

ZEB Ready

BEI = 0.50 2019.09.19 認証取得

事務所 20,033㎡ 2019.08竣工

千葉商科大学付属高校

ZEB Ready

BEI = 0.48 2020.02.07 認証取得

学校 9,700㎡ 2023.03竣工予定

日通新本社ビル

ZEB Ready

BEI=0.48 2021.07.05 認証取得

事務所 42,590㎡ 2021.08竣工予定

御堂筋淡路町計画(関西支店)

事務所部分 ZEB Ready

BEI=0.46 2021.07.06 認証取得

事務所 42,000㎡ 2023.12竣工予定

鹿島南長崎女子寮

5階: ZEH Ready 1-4階: ZEH Oriented

> 集合住宅 4,350m

芝5丁目計画

ZEB Ready

事務所 9,800m

東京農大国際センター

ZEB Ready

大学 3,500m

NTT仙台中央ビル

事務所 42,000m

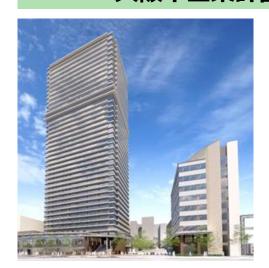
市川塩浜物流施設

Neariy ZEB

工場(倉庫) 183,800m²

日東電工豊橋事業所 (中部支店)

Net ZEB


事務所 5,900m

杉乃井ホテルミドル棟

ZEB Oriented ホテル 33,600m

大阪十三東計画

集合住宅複合 138,000m²

ZEH-M

Oriented

三木産業第1三木ビル

ZEB Ready 事務所 5,900m

横浜旧市庁舎街区

事務所部分 68,000m

4丁目プロジェクト

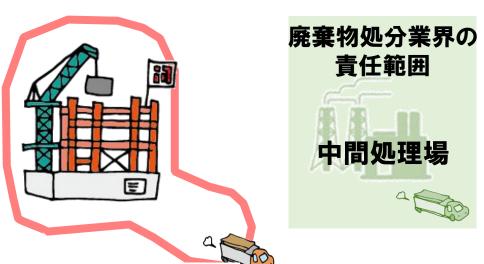
ZEB Ready 事務所複合 18,840m

新福岡ビル計画

部分ZEB Ready ZEB Oriented

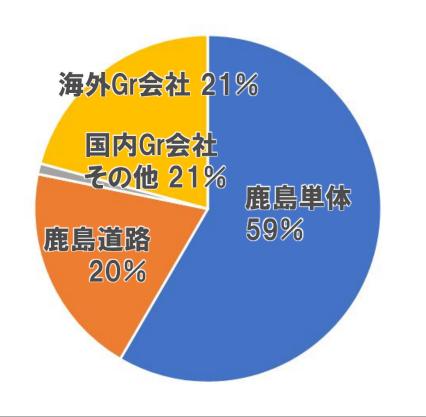
事務所複合 146,000m 施工段階(スコープ1・2)

日建連では「現場からのCO₂の範囲」を以下と定義 現場内 消費する燃料・電気 現場外 残土・廃棄物の搬出運搬時の燃料

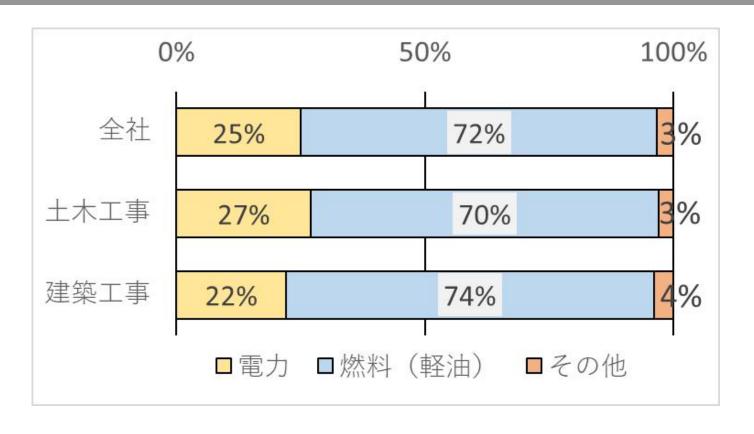

生コン業界の責任範囲

スコープ3

現場内 消費する燃料・電気


現場外

残土・廃棄物の運搬時の燃料

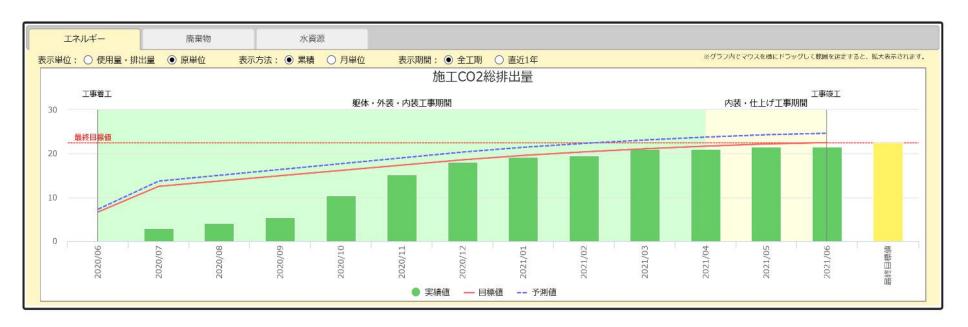

スコープ1,2

スコープ3

2020年度CO₂排出量 鹿島単体 17.1万t グループ総計 29.1万t (海外含む) グループ総計 23.3万t (国内) (国内建設業排出量の3.6%)

項目 ·	2030年	2050年
 1 排出されるCO₂の削減 ① 徹底的な省エネルギー(高効率照明、低燃費運転、3R/生産性向上) ② 重機のハイブリッド/電動化、燃料の低炭素化 ③ 使用電力の脱炭素化(再生可能エネルギー電源割合の増) 	▲ 40%	▲70%
 2 カーボン・オフセット (温室効果ガスの排出を排出量に見合った温室効果ガスの削減活動への投資等により埋め合わせる) ① 再生可能エネルギー電源への投資 (洋上風力、メガソーラー) ② カーボンクレジットの取得 (保有する森林、低炭素コンクリート、SUICOM) ③ CO₂フリー水素の調達・使用 (しかおい水素ファーム) 	▲10%	▲30%
計	▲50%	▲100%

施工時CO2の7割が建設機械の燃料由来、残りが電力由来削減策は①現場での徹底的な省エネルギー


- ②建設機械のハイブリッド/電動化、燃料の低(脱)炭素化
- ③使用電力の脱炭素化

鹿島では、2020年度より、全ての現場※にて、現場毎の施工時CO2排出量を 月単位で集計して見える化する

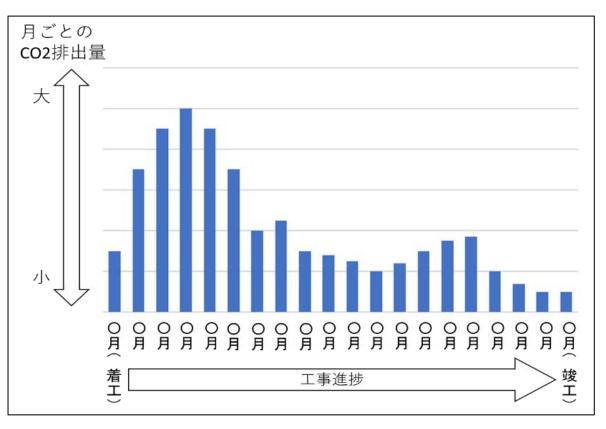
「環境データ評価システム(edes)」

の運用を開始。


※原則、契約高1億円以上の現場

「edes」の画面イメージ

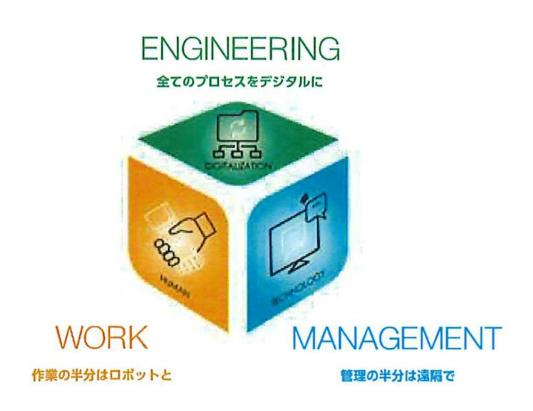
edesでは、


- ①施工管理支援サービス「KMS」「Buildee」から、現場内で稼働する建設機械の情報を、
- ②「環境情報システム(廃棄物マニフェスト)」から土砂・廃棄物搬出車両の情報を、
- ③「請求書伝票」に基づき電力や水の使用量を入力する、ことで各現場の施工CO2排出量を月単位で把握します。

・工事内容(着工直後の基礎工事~竣工間際の内装工事)で

CO2排出量が大きく異なる

・基礎工事が大きなCO2排出元だとすれば、 地下部を縮減した設計がCO2削減に貢献する




建築工事の工事進捗によるCO2排出量(イメージ) 月報(2021年8月号)より

鹿島スマート生産ビジョン

BIMを基軸とした先端ICTや各種ロボットの活用と現場管理手法の革新

⇒ 施工時の効率を徹底的に向上

END